Metamath Proof Explorer


Theorem rdgeq2

Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995) (Revised by Mario Carneiro, 9-May-2015)

Ref Expression
Assertion rdgeq2 A=BrecFA=recFB

Proof

Step Hyp Ref Expression
1 ifeq1 A=Bifg=AifLimdomgrangFgdomg=ifg=BifLimdomgrangFgdomg
2 1 mpteq2dv A=BgVifg=AifLimdomgrangFgdomg=gVifg=BifLimdomgrangFgdomg
3 recseq gVifg=AifLimdomgrangFgdomg=gVifg=BifLimdomgrangFgdomgrecsgVifg=AifLimdomgrangFgdomg=recsgVifg=BifLimdomgrangFgdomg
4 2 3 syl A=BrecsgVifg=AifLimdomgrangFgdomg=recsgVifg=BifLimdomgrangFgdomg
5 df-rdg recFA=recsgVifg=AifLimdomgrangFgdomg
6 df-rdg recFB=recsgVifg=BifLimdomgrangFgdomg
7 4 5 6 3eqtr4g A=BrecFA=recFB