Metamath Proof Explorer


Axiom ax-hcompl

Description: Completeness of a Hilbert space. (Contributed by NM, 7-Aug-2000) (New usage is discouraged.)

Ref Expression
Assertion ax-hcompl FCauchyxFvx

Detailed syntax breakdown

Step Hyp Ref Expression
0 cF classF
1 ccauold classCauchy
2 0 1 wcel wffFCauchy
3 vx setvarx
4 chba class
5 chli classv
6 3 cv setvarx
7 0 6 5 wbr wffFvx
8 7 3 4 wrex wffxFvx
9 2 8 wi wffFCauchyxFvx