Metamath Proof Explorer


Axiom ax-his2

Description: Distributive law for inner product. Postulate (S2) of Beran p. 95. (Contributed by NM, 31-Jul-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-his2 ABCA+BihC=AihC+BihC

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 chba class
2 0 1 wcel wffA
3 cB classB
4 3 1 wcel wffB
5 cC classC
6 5 1 wcel wffC
7 2 4 6 w3a wffABC
8 cva class+
9 0 3 8 co classA+B
10 csp classih
11 9 5 10 co classA+BihC
12 0 5 10 co classAihC
13 caddc class+
14 3 5 10 co classBihC
15 12 14 13 co classAihC+BihC
16 11 15 wceq wffA+BihC=AihC+BihC
17 7 16 wi wffABCA+BihC=AihC+BihC