Metamath Proof Explorer


Theorem h2hva

Description: The group (addition) operation of Hilbert space. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses h2h.1 U=+norm
h2h.2 UNrmCVec
Assertion h2hva +=+vU

Proof

Step Hyp Ref Expression
1 h2h.1 U=+norm
2 h2h.2 UNrmCVec
3 eqid +v+norm=+v+norm
4 3 vafval +v+norm=1st1st+norm
5 opex +V
6 1 2 eqeltrri +normNrmCVec
7 nvex +normNrmCVec+VVnormV
8 6 7 ax-mp +VVnormV
9 8 simp3i normV
10 5 9 op1st 1st+norm=+
11 10 fveq2i 1st1st+norm=1st+
12 8 simp1i +V
13 8 simp2i V
14 12 13 op1st 1st+=+
15 4 11 14 3eqtrri +=+v+norm
16 1 fveq2i +vU=+v+norm
17 15 16 eqtr4i +=+vU