Metamath Proof Explorer


Theorem h2hsm

Description: The scalar product operation of Hilbert space. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Hypotheses h2h.1 U=+norm
h2h.2 UNrmCVec
Assertion h2hsm =𝑠OLDU

Proof

Step Hyp Ref Expression
1 h2h.1 U=+norm
2 h2h.2 UNrmCVec
3 eqid 𝑠OLD+norm=𝑠OLD+norm
4 3 smfval 𝑠OLD+norm=2nd1st+norm
5 opex +V
6 1 2 eqeltrri +normNrmCVec
7 nvex +normNrmCVec+VVnormV
8 6 7 ax-mp +VVnormV
9 8 simp3i normV
10 5 9 op1st 1st+norm=+
11 10 fveq2i 2nd1st+norm=2nd+
12 8 simp1i +V
13 8 simp2i V
14 12 13 op2nd 2nd+=
15 4 11 14 3eqtrri =𝑠OLD+norm
16 1 fveq2i 𝑠OLDU=𝑠OLD+norm
17 15 16 eqtr4i =𝑠OLDU