Metamath Proof Explorer


Theorem nvex

Description: The components of a normed complex vector space are sets. (Contributed by NM, 5-Jun-2008) (Revised by Mario Carneiro, 1-May-2015) (New usage is discouraged.)

Ref Expression
Assertion nvex GSNNrmCVecGVSVNV

Proof

Step Hyp Ref Expression
1 nvvcop GSNNrmCVecGSCVecOLD
2 vcex GSCVecOLDGVSV
3 1 2 syl GSNNrmCVecGVSV
4 nvss NrmCVecCVecOLD×V
5 4 sseli GSNNrmCVecGSNCVecOLD×V
6 opelxp2 GSNCVecOLD×VNV
7 5 6 syl GSNNrmCVecNV
8 df-3an GVSVNVGVSVNV
9 3 7 8 sylanbrc GSNNrmCVecGVSVNV