Metamath Proof Explorer


Theorem vcex

Description: The components of a complex vector space are sets. (Contributed by NM, 31-May-2008) (New usage is discouraged.)

Ref Expression
Assertion vcex GSCVecOLDGVSV

Proof

Step Hyp Ref Expression
1 df-br GCVecOLDSGSCVecOLD
2 vcrel RelCVecOLD
3 2 brrelex12i GCVecOLDSGVSV
4 1 3 sylbir GSCVecOLDGVSV