Metamath Proof Explorer


Theorem h2hnm

Description: The norm function of Hilbert space. (Contributed by NM, 5-Jun-2008) (New usage is discouraged.)

Ref Expression
Hypotheses h2h.1 U=+norm
h2h.2 UNrmCVec
Assertion h2hnm norm=normCVU

Proof

Step Hyp Ref Expression
1 h2h.1 U=+norm
2 h2h.2 UNrmCVec
3 1 fveq2i normCVU=normCV+norm
4 eqid normCV+norm=normCV+norm
5 4 nmcvfval normCV+norm=2nd+norm
6 opex +V
7 1 2 eqeltrri +normNrmCVec
8 nvex +normNrmCVec+VVnormV
9 7 8 ax-mp +VVnormV
10 9 simp3i normV
11 6 10 op2nd 2nd+norm=norm
12 3 5 11 3eqtrri norm=normCVU