Metamath Proof Explorer


Axiom ax-hvass

Description: Vector addition is associative. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvass ABCA+B+C=A+B+C

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 chba class
2 0 1 wcel wffA
3 cB classB
4 3 1 wcel wffB
5 cC classC
6 5 1 wcel wffC
7 2 4 6 w3a wffABC
8 cva class+
9 0 3 8 co classA+B
10 9 5 8 co classA+B+C
11 3 5 8 co classB+C
12 0 11 8 co classA+B+C
13 10 12 wceq wffA+B+C=A+B+C
14 7 13 wi wffABCA+B+C=A+B+C