Metamath Proof Explorer


Axiom ax-hvcom

Description: Vector addition is commutative. (Contributed by NM, 3-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion ax-hvcom ABA+B=B+A

Detailed syntax breakdown

Step Hyp Ref Expression
0 cA classA
1 chba class
2 0 1 wcel wffA
3 cB classB
4 3 1 wcel wffB
5 2 4 wa wffAB
6 cva class+
7 0 3 6 co classA+B
8 3 0 6 co classB+A
9 7 8 wceq wffA+B=B+A
10 5 9 wi wffABA+B=B+A