Metamath Proof Explorer


Theorem ax6er

Description: Commuted form of ax6e . (Could be placed right after ax6e ). (Contributed by BJ, 15-Sep-2018)

Ref Expression
Assertion ax6er x y = x

Proof

Step Hyp Ref Expression
1 ax6e x x = y
2 equcomi x = y y = x
3 1 2 eximii x y = x