Metamath Proof Explorer


Theorem ax9

Description: Proof of ax-9 from ax9v1 and ax9v2 , proving sufficiency of the conjunction of the latter two weakened versions of ax9v , which is itself a weakened version of ax-9 . (Contributed by BJ, 7-Dec-2020) (Proof shortened by Wolf Lammen, 11-Apr-2021)

Ref Expression
Assertion ax9 x=yzxzy

Proof

Step Hyp Ref Expression
1 equvinv x=ytt=xt=y
2 ax9v2 x=tzxzt
3 2 equcoms t=xzxzt
4 ax9v1 t=yztzy
5 3 4 sylan9 t=xt=yzxzy
6 5 exlimiv tt=xt=yzxzy
7 1 6 sylbi x=yzxzy