Metamath Proof Explorer


Theorem axac2

Description: Derive ax-ac2 from ax-ac . (Contributed by NM, 19-Dec-2016) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion axac2 yzvuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v

Proof

Step Hyp Ref Expression
1 dfac2a xyzxz∃!vzuyzuvuCHOICE
2 ac3 yzxz∃!vzuyzuvu
3 1 2 mpg CHOICE
4 dfackm CHOICExyzvuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v
5 3 4 mpbi xyzvuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v
6 5 spi yzvuyxzyvx¬y=vzv¬yxzxvzvyuzuyu=v