Metamath Proof Explorer


Theorem dfac2a

Description: Our Axiom of Choice (in the form of ac3 ) implies the Axiom of Choice (first form) of Enderton p. 49. The proof uses neither AC nor the Axiom of Regularity. See dfac2b for the converse (which does use the Axiom of Regularity). (Contributed by NM, 5-Apr-2004) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Assertion dfac2a xyzxz∃!wzvyzvwvCHOICE

Proof

Step Hyp Ref Expression
1 riotauni ∃!wzvyzvwvιwz|vyzvwv=wz|vyzvwv
2 riotacl ∃!wzvyzvwvιwz|vyzvwvz
3 1 2 eqeltrrd ∃!wzvyzvwvwz|vyzvwvz
4 elequ2 u=zwuwz
5 elequ1 u=zuvzv
6 5 anbi1d u=zuvwvzvwv
7 6 rexbidv u=zvyuvwvvyzvwv
8 4 7 anbi12d u=zwuvyuvwvwzvyzvwv
9 8 rabbidva2 u=zwu|vyuvwv=wz|vyzvwv
10 9 unieqd u=zwu|vyuvwv=wz|vyzvwv
11 eqid uxwu|vyuvwv=uxwu|vyuvwv
12 vex zV
13 12 rabex wz|vyzvwvV
14 13 uniex wz|vyzvwvV
15 10 11 14 fvmpt zxuxwu|vyuvwvz=wz|vyzvwv
16 15 eleq1d zxuxwu|vyuvwvzzwz|vyzvwvz
17 3 16 imbitrrid zx∃!wzvyzvwvuxwu|vyuvwvzz
18 17 imim2d zxz∃!wzvyzvwvzuxwu|vyuvwvzz
19 18 ralimia zxz∃!wzvyzvwvzxzuxwu|vyuvwvzz
20 ssrab2 wu|vyuvwvu
21 elssuni uxux
22 20 21 sstrid uxwu|vyuvwvx
23 22 unissd uxwu|vyuvwvx
24 vex xV
25 24 uniex xV
26 25 uniex xV
27 26 elpw2 wu|vyuvwv𝒫xwu|vyuvwvx
28 23 27 sylibr uxwu|vyuvwv𝒫x
29 11 28 fmpti uxwu|vyuvwv:x𝒫x
30 26 pwex 𝒫xV
31 fex2 uxwu|vyuvwv:x𝒫xxV𝒫xVuxwu|vyuvwvV
32 29 24 30 31 mp3an uxwu|vyuvwvV
33 fveq1 f=uxwu|vyuvwvfz=uxwu|vyuvwvz
34 33 eleq1d f=uxwu|vyuvwvfzzuxwu|vyuvwvzz
35 34 imbi2d f=uxwu|vyuvwvzfzzzuxwu|vyuvwvzz
36 35 ralbidv f=uxwu|vyuvwvzxzfzzzxzuxwu|vyuvwvzz
37 32 36 spcev zxzuxwu|vyuvwvzzfzxzfzz
38 19 37 syl zxz∃!wzvyzvwvfzxzfzz
39 38 exlimiv yzxz∃!wzvyzvwvfzxzfzz
40 39 alimi xyzxz∃!wzvyzvwvxfzxzfzz
41 dfac3 CHOICExfzxzfzz
42 40 41 sylibr xyzxz∃!wzvyzvwvCHOICE