Metamath Proof Explorer


Theorem axc711to11

Description: Rederivation of ax-11 from axc711 . Note that ax-c7 and ax-11 are not used by the rederivation. (Contributed by NM, 18-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc711to11 xyφyxφ

Proof

Step Hyp Ref Expression
1 axc711toc7 ¬y¬y¬xyφ¬xyφ
2 1 con4i xyφy¬y¬xyφ
3 axc711 ¬y¬xyφxφ
4 3 alimi y¬y¬xyφyxφ
5 2 4 syl xyφyxφ