Metamath Proof Explorer


Theorem axc711toc7

Description: Rederivation of ax-c7 from axc711 . Note that ax-c7 and ax-11 are not used by the rederivation. (Contributed by NM, 18-Nov-2006) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion axc711toc7 ¬x¬xφφ

Proof

Step Hyp Ref Expression
1 hba1-o xφxxφ
2 1 con3i ¬xxφ¬xφ
3 2 alimi x¬xxφx¬xφ
4 3 con3i ¬x¬xφ¬x¬xxφ
5 axc711 ¬x¬xxφxφ
6 ax-c5 xφφ
7 4 5 6 3syl ¬x¬xφφ