Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Probability
Bertrand's Ballot Problem
ballotlemoex
Next ⟩
ballotlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
ballotlemoex
Description:
O
is a set.
(Contributed by
Thierry Arnoux
, 7-Dec-2016)
Ref
Expression
Hypotheses
ballotth.m
⊢
M
∈
ℕ
ballotth.n
⊢
N
∈
ℕ
ballotth.o
⊢
O
=
c
∈
𝒫
1
…
M
+
N
|
c
=
M
Assertion
ballotlemoex
⊢
O
∈
V
Proof
Step
Hyp
Ref
Expression
1
ballotth.m
⊢
M
∈
ℕ
2
ballotth.n
⊢
N
∈
ℕ
3
ballotth.o
⊢
O
=
c
∈
𝒫
1
…
M
+
N
|
c
=
M
4
ovex
⊢
1
…
M
+
N
∈
V
5
4
pwex
⊢
𝒫
1
…
M
+
N
∈
V
6
3
5
rabex2
⊢
O
∈
V