Metamath Proof Explorer


Theorem ballotlemoex

Description: O is a set. (Contributed by Thierry Arnoux, 7-Dec-2016)

Ref Expression
Hypotheses ballotth.m M
ballotth.n N
ballotth.o O=c𝒫1M+N|c=M
Assertion ballotlemoex OV

Proof

Step Hyp Ref Expression
1 ballotth.m M
2 ballotth.n N
3 ballotth.o O=c𝒫1M+N|c=M
4 ovex 1M+NV
5 4 pwex 𝒫1M+NV
6 3 5 rabex2 OV