Metamath Proof Explorer


Theorem barbariALT

Description: Alternate proof of barbari , shorter but using more axioms. See comment of dariiALT . (Contributed by David A. Wheeler, 27-Aug-2016) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses barbari.maj xφψ
barbari.min xχφ
barbari.e xχ
Assertion barbariALT xχψ

Proof

Step Hyp Ref Expression
1 barbari.maj xφψ
2 barbari.min xχφ
3 barbari.e xχ
4 1 2 barbara xχψ
5 4 spi χψ
6 5 ancli χχψ
7 3 6 eximii xχψ