Metamath Proof Explorer


Theorem bicontr

Description: Biconditional of its own negation is a contradiction. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Assertion bicontr ¬φφ

Proof

Step Hyp Ref Expression
1 biid φφ
2 notbinot1 ¬¬φφφφ
3 1 2 mpbir ¬¬φφ
4 3 bifal ¬φφ