Metamath Proof Explorer


Theorem impor

Description: An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Assertion impor φ ψ χ ¬ φ ψ χ

Proof

Step Hyp Ref Expression
1 imor φ ψ χ ¬ φ ψ χ
2 orass ¬ φ ψ χ ¬ φ ψ χ
3 1 2 bitr4i φ ψ χ ¬ φ ψ χ