Metamath Proof Explorer


Theorem impor

Description: An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Assertion impor
|- ( ( ph -> ( ps \/ ch ) ) <-> ( ( -. ph \/ ps ) \/ ch ) )

Proof

Step Hyp Ref Expression
1 imor
 |-  ( ( ph -> ( ps \/ ch ) ) <-> ( -. ph \/ ( ps \/ ch ) ) )
2 orass
 |-  ( ( ( -. ph \/ ps ) \/ ch ) <-> ( -. ph \/ ( ps \/ ch ) ) )
3 1 2 bitr4i
 |-  ( ( ph -> ( ps \/ ch ) ) <-> ( ( -. ph \/ ps ) \/ ch ) )