Metamath Proof Explorer


Theorem impor

Description: An equivalent formula for implying a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Assertion impor ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( ( ¬ 𝜑𝜓 ) ∨ 𝜒 ) )

Proof

Step Hyp Ref Expression
1 imor ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( ¬ 𝜑 ∨ ( 𝜓𝜒 ) ) )
2 orass ( ( ( ¬ 𝜑𝜓 ) ∨ 𝜒 ) ↔ ( ¬ 𝜑 ∨ ( 𝜓𝜒 ) ) )
3 1 2 bitr4i ( ( 𝜑 → ( 𝜓𝜒 ) ) ↔ ( ( ¬ 𝜑𝜓 ) ∨ 𝜒 ) )