Metamath Proof Explorer


Theorem orfa

Description: The falsum F. can be removed from a disjunction. (Contributed by Giovanni Mascellani, 15-Sep-2017)

Ref Expression
Assertion orfa ( ( 𝜑 ∨ ⊥ ) ↔ 𝜑 )

Proof

Step Hyp Ref Expression
1 orcom ( ( 𝜑 ∨ ⊥ ) ↔ ( ⊥ ∨ 𝜑 ) )
2 df-or ( ( ⊥ ∨ 𝜑 ) ↔ ( ¬ ⊥ → 𝜑 ) )
3 1 2 bitri ( ( 𝜑 ∨ ⊥ ) ↔ ( ¬ ⊥ → 𝜑 ) )
4 fal ¬ ⊥
5 pm2.27 ( ¬ ⊥ → ( ( ¬ ⊥ → 𝜑 ) → 𝜑 ) )
6 4 5 ax-mp ( ( ¬ ⊥ → 𝜑 ) → 𝜑 )
7 3 6 sylbi ( ( 𝜑 ∨ ⊥ ) → 𝜑 )
8 orc ( 𝜑 → ( 𝜑 ∨ ⊥ ) )
9 7 8 impbii ( ( 𝜑 ∨ ⊥ ) ↔ 𝜑 )