Metamath Proof Explorer


Theorem biimp

Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999)

Ref Expression
Assertion biimp φψφψ

Proof

Step Hyp Ref Expression
1 df-bi ¬φψ¬φψ¬ψφ¬¬φψ¬ψφφψ
2 simplim ¬φψ¬φψ¬ψφ¬¬φψ¬ψφφψφψ¬φψ¬ψφ
3 1 2 ax-mp φψ¬φψ¬ψφ
4 simplim ¬φψ¬ψφφψ
5 3 4 syl φψφψ