Metamath Proof Explorer


Theorem bj-alcomexcom

Description: Commutation of two existential quantifiers on a formula is equivalent to commutation of two universal quantifiers over the same variables on the negation of that formula. Can be placed in the ax-4 section, soon after 2nexaln , and used to prove excom . (Contributed by BJ, 29-Nov-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-alcomexcom x y ¬ φ y x ¬ φ y x φ x y φ

Proof

Step Hyp Ref Expression
1 con34b y x φ x y φ ¬ x y φ ¬ y x φ
2 2nexaln ¬ x y φ x y ¬ φ
3 2nexaln ¬ y x φ y x ¬ φ
4 2 3 imbi12i ¬ x y φ ¬ y x φ x y ¬ φ y x ¬ φ
5 1 4 bitr2i x y ¬ φ y x ¬ φ y x φ x y φ