Metamath Proof Explorer


Theorem bj-alcomexcom

Description: Commutation of universal quantifiers implies commutation of existential quantifiers. Can be placed in the ax-4 section, soon after 2nexaln , and used to prove excom . (Contributed by BJ, 29-Nov-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-alcomexcom ( ( ∀ 𝑥𝑦 ¬ 𝜑 → ∀ 𝑦𝑥 ¬ 𝜑 ) → ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥𝑦 𝜑 ) )

Proof

Step Hyp Ref Expression
1 2nexaln ( ¬ ∃ 𝑥𝑦 𝜑 ↔ ∀ 𝑥𝑦 ¬ 𝜑 )
2 2nexaln ( ¬ ∃ 𝑦𝑥 𝜑 ↔ ∀ 𝑦𝑥 ¬ 𝜑 )
3 1 2 imbi12i ( ( ¬ ∃ 𝑥𝑦 𝜑 → ¬ ∃ 𝑦𝑥 𝜑 ) ↔ ( ∀ 𝑥𝑦 ¬ 𝜑 → ∀ 𝑦𝑥 ¬ 𝜑 ) )
4 con4 ( ( ¬ ∃ 𝑥𝑦 𝜑 → ¬ ∃ 𝑦𝑥 𝜑 ) → ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥𝑦 𝜑 ) )
5 3 4 sylbir ( ( ∀ 𝑥𝑦 ¬ 𝜑 → ∀ 𝑦𝑥 ¬ 𝜑 ) → ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥𝑦 𝜑 ) )