Metamath Proof Explorer


Theorem bj-alcomexcom

Description: Commutation of two existential quantifiers on a formula is equivalent to commutation of two universal quantifiers over the same variables on the negation of that formula. Can be placed in the ax-4 section, soon after 2nexaln , and used to prove excom . (Contributed by BJ, 29-Nov-2020) (Proof modification is discouraged.)

Ref Expression
Assertion bj-alcomexcom ( ( ∀ 𝑥𝑦 ¬ 𝜑 → ∀ 𝑦𝑥 ¬ 𝜑 ) ↔ ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥𝑦 𝜑 ) )

Proof

Step Hyp Ref Expression
1 con34b ( ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥𝑦 𝜑 ) ↔ ( ¬ ∃ 𝑥𝑦 𝜑 → ¬ ∃ 𝑦𝑥 𝜑 ) )
2 2nexaln ( ¬ ∃ 𝑥𝑦 𝜑 ↔ ∀ 𝑥𝑦 ¬ 𝜑 )
3 2nexaln ( ¬ ∃ 𝑦𝑥 𝜑 ↔ ∀ 𝑦𝑥 ¬ 𝜑 )
4 2 3 imbi12i ( ( ¬ ∃ 𝑥𝑦 𝜑 → ¬ ∃ 𝑦𝑥 𝜑 ) ↔ ( ∀ 𝑥𝑦 ¬ 𝜑 → ∀ 𝑦𝑥 ¬ 𝜑 ) )
5 1 4 bitr2i ( ( ∀ 𝑥𝑦 ¬ 𝜑 → ∀ 𝑦𝑥 ¬ 𝜑 ) ↔ ( ∃ 𝑦𝑥 𝜑 → ∃ 𝑥𝑦 𝜑 ) )