Metamath Proof Explorer


Theorem excom

Description: Theorem 19.11 of Margaris p. 89. (Contributed by NM, 5-Aug-1993) Remove dependencies on ax-5 , ax-6 , ax-7 , ax-10 , ax-12 . (Revised by Wolf Lammen, 8-Jan-2018) (Proof shortened by Wolf Lammen, 22-Aug-2020)

Ref Expression
Assertion excom ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑦𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 alcom ( ∀ 𝑥𝑦 ¬ 𝜑 ↔ ∀ 𝑦𝑥 ¬ 𝜑 )
2 1 notbii ( ¬ ∀ 𝑥𝑦 ¬ 𝜑 ↔ ¬ ∀ 𝑦𝑥 ¬ 𝜑 )
3 2exnaln ( ∃ 𝑥𝑦 𝜑 ↔ ¬ ∀ 𝑥𝑦 ¬ 𝜑 )
4 2exnaln ( ∃ 𝑦𝑥 𝜑 ↔ ¬ ∀ 𝑦𝑥 ¬ 𝜑 )
5 2 3 4 3bitr4i ( ∃ 𝑥𝑦 𝜑 ↔ ∃ 𝑦𝑥 𝜑 )