Metamath Proof Explorer


Theorem bj-axc10v

Description: Version of axc10 with a disjoint variable condition, which does not require ax-13 . (Contributed by BJ, 14-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-axc10v xx=yxφφ

Proof

Step Hyp Ref Expression
1 ax6v ¬x¬x=y
2 con3 x=yxφ¬xφ¬x=y
3 2 al2imi xx=yxφx¬xφx¬x=y
4 1 3 mtoi xx=yxφ¬x¬xφ
5 axc7 ¬x¬xφφ
6 4 5 syl xx=yxφφ