Metamath Proof Explorer


Theorem bj-cmnssmnd

Description: Commutative monoids are monoids. (Contributed by BJ, 9-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-cmnssmnd CMnd Mnd

Proof

Step Hyp Ref Expression
1 df-cmn CMnd = x Mnd | y Base x z Base x y + x z = z + x y
2 1 ssrab3 CMnd Mnd