Metamath Proof Explorer


Theorem bj-csbprc

Description: More direct proof of csbprc (fewer essential steps). (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)

Ref Expression
Assertion bj-csbprc ¬AVA/xB=

Proof

Step Hyp Ref Expression
1 df-csb A/xB=y|[˙A/x]˙yB
2 sbcex [˙A/x]˙yBAV
3 2 con3i ¬AV¬[˙A/x]˙yB
4 3 alrimiv ¬AVy¬[˙A/x]˙yB
5 bj-ab0 y¬[˙A/x]˙yBy|[˙A/x]˙yB=
6 4 5 syl ¬AVy|[˙A/x]˙yB=
7 1 6 eqtrid ¬AVA/xB=