Description: More direct proof of csbprc (fewer essential steps). (Contributed by BJ, 24-Jul-2019) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb | ⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } | |
2 | sbcex | ⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 → 𝐴 ∈ V ) | |
3 | 2 | con3i | ⊢ ( ¬ 𝐴 ∈ V → ¬ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) |
4 | 3 | alrimiv | ⊢ ( ¬ 𝐴 ∈ V → ∀ 𝑦 ¬ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) |
5 | bj-ab0 | ⊢ ( ∀ 𝑦 ¬ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = ∅ ) | |
6 | 4 5 | syl | ⊢ ( ¬ 𝐴 ∈ V → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = ∅ ) |
7 | 1 6 | eqtrid | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) |