Metamath Proof Explorer


Theorem csbprc

Description: The proper substitution of a proper class for a set into a class results in the empty set. (Contributed by NM, 17-Aug-2018) (Proof shortened by JJ, 27-Aug-2021)

Ref Expression
Assertion csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = ∅ )

Proof

Step Hyp Ref Expression
1 sbcex ( [ 𝐴 / 𝑥 ] 𝑦𝐵𝐴 ∈ V )
2 falim ( ⊥ → 𝐴 ∈ V )
3 1 2 pm5.21ni ( ¬ 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝑦𝐵 ↔ ⊥ ) )
4 3 abbidv ( ¬ 𝐴 ∈ V → { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 } = { 𝑦 ∣ ⊥ } )
5 df-csb 𝐴 / 𝑥 𝐵 = { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 }
6 fal ¬ ⊥
7 6 abf { 𝑦 ∣ ⊥ } = ∅
8 7 eqcomi ∅ = { 𝑦 ∣ ⊥ }
9 4 5 8 3eqtr4g ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = ∅ )