Metamath Proof Explorer


Theorem bj-nnfa

Description: Nonfreeness implies the equivalent of ax-5 . See nf5r . (Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion bj-nnfa Ⅎ'xφφxφ

Proof

Step Hyp Ref Expression
1 df-bj-nnf Ⅎ'xφxφφφxφ
2 1 simprbi Ⅎ'xφφxφ