Metamath Proof Explorer


Theorem bj-nnfea

Description: Nonfreeness implies the equivalent of ax5ea . (Contributed by BJ, 28-Jul-2023)

Ref Expression
Assertion bj-nnfea Ⅎ'xφxφxφ

Proof

Step Hyp Ref Expression
1 bj-nnfe Ⅎ'xφxφφ
2 bj-nnfa Ⅎ'xφφxφ
3 1 2 syld Ⅎ'xφxφxφ