Metamath Proof Explorer


Theorem bnj1029

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1029 RFrSeAXATrFotrClXARAR

Proof

Step Hyp Ref Expression
1 biid f=predXARf=predXAR
2 biid iωsucinfsuci=yfipredyARiωsucinfsuci=yfipredyAR
3 biid nωfFnnf=predXARiωsucinfsuci=yfipredyARnωfFnnf=predXARiωsucinfsuci=yfipredyAR
4 biid RFrSeAXAytrClXARzpredyARRFrSeAXAytrClXARzpredyAR
5 biid mωn=sucmp=sucnmωn=sucmp=sucn
6 biid inyfiinyfi
7 biid [˙p/n]˙f=predXAR[˙p/n]˙f=predXAR
8 biid [˙p/n]˙iωsucinfsuci=yfipredyAR[˙p/n]˙iωsucinfsuci=yfipredyAR
9 biid [˙p/n]˙nωfFnnf=predXARiωsucinfsuci=yfipredyAR[˙p/n]˙nωfFnnf=predXARiωsucinfsuci=yfipredyAR
10 biid [˙fnyfmpredyAR/f]˙[˙p/n]˙f=predXAR[˙fnyfmpredyAR/f]˙[˙p/n]˙f=predXAR
11 biid [˙fnyfmpredyAR/f]˙[˙p/n]˙iωsucinfsuci=yfipredyAR[˙fnyfmpredyAR/f]˙[˙p/n]˙iωsucinfsuci=yfipredyAR
12 biid [˙fnyfmpredyAR/f]˙[˙p/n]˙nωfFnnf=predXARiωsucinfsuci=yfipredyAR[˙fnyfmpredyAR/f]˙[˙p/n]˙nωfFnnf=predXARiωsucinfsuci=yfipredyAR
13 eqid ω=ω
14 eqid f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR=f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR
15 eqid yfmpredyAR=yfmpredyAR
16 eqid fnyfmpredyAR=fnyfmpredyAR
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 bnj907 RFrSeAXATrFotrClXARAR