Metamath Proof Explorer


Theorem bnj1093

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1093.1 No typesetting found for |- E. j ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` i ) C_ B ) with typecode |-
bnj1093.2 ψiωsucinfsuci=yfipredyAR
bnj1093.3 χnDfFnnφψ
Assertion bnj1093 Could not format assertion : No typesetting found for |- ( ( th /\ ta /\ ch /\ ze ) -> A. i E. j ( ph0 -> ( f ` i ) C_ B ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 bnj1093.1 Could not format E. j ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` i ) C_ B ) : No typesetting found for |- E. j ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` i ) C_ B ) with typecode |-
2 bnj1093.2 ψiωsucinfsuci=yfipredyAR
3 bnj1093.3 χnDfFnnφψ
4 2 bnj1095 ψiψ
5 4 3 bnj1096 χiχ
6 5 bnj1350 θτχiθτχ
7 impexp Could not format ( ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` i ) C_ B ) <-> ( ( th /\ ta /\ ch ) -> ( ph0 -> ( f ` i ) C_ B ) ) ) : No typesetting found for |- ( ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` i ) C_ B ) <-> ( ( th /\ ta /\ ch ) -> ( ph0 -> ( f ` i ) C_ B ) ) ) with typecode |-
8 7 exbii Could not format ( E. j ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` i ) C_ B ) <-> E. j ( ( th /\ ta /\ ch ) -> ( ph0 -> ( f ` i ) C_ B ) ) ) : No typesetting found for |- ( E. j ( ( ( th /\ ta /\ ch ) /\ ph0 ) -> ( f ` i ) C_ B ) <-> E. j ( ( th /\ ta /\ ch ) -> ( ph0 -> ( f ` i ) C_ B ) ) ) with typecode |-
9 1 8 mpbi Could not format E. j ( ( th /\ ta /\ ch ) -> ( ph0 -> ( f ` i ) C_ B ) ) : No typesetting found for |- E. j ( ( th /\ ta /\ ch ) -> ( ph0 -> ( f ` i ) C_ B ) ) with typecode |-
10 9 19.37iv Could not format ( ( th /\ ta /\ ch ) -> E. j ( ph0 -> ( f ` i ) C_ B ) ) : No typesetting found for |- ( ( th /\ ta /\ ch ) -> E. j ( ph0 -> ( f ` i ) C_ B ) ) with typecode |-
11 6 10 alrimih Could not format ( ( th /\ ta /\ ch ) -> A. i E. j ( ph0 -> ( f ` i ) C_ B ) ) : No typesetting found for |- ( ( th /\ ta /\ ch ) -> A. i E. j ( ph0 -> ( f ` i ) C_ B ) ) with typecode |-
12 11 bnj721 Could not format ( ( th /\ ta /\ ch /\ ze ) -> A. i E. j ( ph0 -> ( f ` i ) C_ B ) ) : No typesetting found for |- ( ( th /\ ta /\ ch /\ ze ) -> A. i E. j ( ph0 -> ( f ` i ) C_ B ) ) with typecode |-