Metamath Proof Explorer


Theorem bnj1096

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1096.1 φxφ
bnj1096.2 ψχθτφ
Assertion bnj1096 ψxψ

Proof

Step Hyp Ref Expression
1 bnj1096.1 φxφ
2 bnj1096.2 ψχθτφ
3 ax-5 χxχ
4 ax-5 θxθ
5 ax-5 τxτ
6 3 4 5 1 bnj982 χθτφxχθτφ
7 2 6 hbxfrbi ψxψ