Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj1096.1 | |- ( ph -> A. x ph ) |
|
bnj1096.2 | |- ( ps <-> ( ch /\ th /\ ta /\ ph ) ) |
||
Assertion | bnj1096 | |- ( ps -> A. x ps ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj1096.1 | |- ( ph -> A. x ph ) |
|
2 | bnj1096.2 | |- ( ps <-> ( ch /\ th /\ ta /\ ph ) ) |
|
3 | ax-5 | |- ( ch -> A. x ch ) |
|
4 | ax-5 | |- ( th -> A. x th ) |
|
5 | ax-5 | |- ( ta -> A. x ta ) |
|
6 | 3 4 5 1 | bnj982 | |- ( ( ch /\ th /\ ta /\ ph ) -> A. x ( ch /\ th /\ ta /\ ph ) ) |
7 | 2 6 | hbxfrbi | |- ( ps -> A. x ps ) |