Metamath Proof Explorer


Theorem bnj1096

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1096.1
|- ( ph -> A. x ph )
bnj1096.2
|- ( ps <-> ( ch /\ th /\ ta /\ ph ) )
Assertion bnj1096
|- ( ps -> A. x ps )

Proof

Step Hyp Ref Expression
1 bnj1096.1
 |-  ( ph -> A. x ph )
2 bnj1096.2
 |-  ( ps <-> ( ch /\ th /\ ta /\ ph ) )
3 ax-5
 |-  ( ch -> A. x ch )
4 ax-5
 |-  ( th -> A. x th )
5 ax-5
 |-  ( ta -> A. x ta )
6 3 4 5 1 bnj982
 |-  ( ( ch /\ th /\ ta /\ ph ) -> A. x ( ch /\ th /\ ta /\ ph ) )
7 2 6 hbxfrbi
 |-  ( ps -> A. x ps )