Metamath Proof Explorer


Theorem bnj982

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj982.1
|- ( ph -> A. x ph )
bnj982.2
|- ( ps -> A. x ps )
bnj982.3
|- ( ch -> A. x ch )
bnj982.4
|- ( th -> A. x th )
Assertion bnj982
|- ( ( ph /\ ps /\ ch /\ th ) -> A. x ( ph /\ ps /\ ch /\ th ) )

Proof

Step Hyp Ref Expression
1 bnj982.1
 |-  ( ph -> A. x ph )
2 bnj982.2
 |-  ( ps -> A. x ps )
3 bnj982.3
 |-  ( ch -> A. x ch )
4 bnj982.4
 |-  ( th -> A. x th )
5 df-bnj17
 |-  ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ph /\ ps /\ ch ) /\ th ) )
6 1 2 3 hb3an
 |-  ( ( ph /\ ps /\ ch ) -> A. x ( ph /\ ps /\ ch ) )
7 6 4 hban
 |-  ( ( ( ph /\ ps /\ ch ) /\ th ) -> A. x ( ( ph /\ ps /\ ch ) /\ th ) )
8 5 7 hbxfrbi
 |-  ( ( ph /\ ps /\ ch /\ th ) -> A. x ( ph /\ ps /\ ch /\ th ) )