Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bnj982.1 | |- ( ph -> A. x ph ) |
|
bnj982.2 | |- ( ps -> A. x ps ) |
||
bnj982.3 | |- ( ch -> A. x ch ) |
||
bnj982.4 | |- ( th -> A. x th ) |
||
Assertion | bnj982 | |- ( ( ph /\ ps /\ ch /\ th ) -> A. x ( ph /\ ps /\ ch /\ th ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj982.1 | |- ( ph -> A. x ph ) |
|
2 | bnj982.2 | |- ( ps -> A. x ps ) |
|
3 | bnj982.3 | |- ( ch -> A. x ch ) |
|
4 | bnj982.4 | |- ( th -> A. x th ) |
|
5 | df-bnj17 | |- ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ph /\ ps /\ ch ) /\ th ) ) |
|
6 | 1 2 3 | hb3an | |- ( ( ph /\ ps /\ ch ) -> A. x ( ph /\ ps /\ ch ) ) |
7 | 6 4 | hban | |- ( ( ( ph /\ ps /\ ch ) /\ th ) -> A. x ( ( ph /\ ps /\ ch ) /\ th ) ) |
8 | 5 7 | hbxfrbi | |- ( ( ph /\ ps /\ ch /\ th ) -> A. x ( ph /\ ps /\ ch /\ th ) ) |