Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj982.1 | |- ( ph -> A. x ph ) |
|
| bnj982.2 | |- ( ps -> A. x ps ) |
||
| bnj982.3 | |- ( ch -> A. x ch ) |
||
| bnj982.4 | |- ( th -> A. x th ) |
||
| Assertion | bnj982 | |- ( ( ph /\ ps /\ ch /\ th ) -> A. x ( ph /\ ps /\ ch /\ th ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj982.1 | |- ( ph -> A. x ph ) |
|
| 2 | bnj982.2 | |- ( ps -> A. x ps ) |
|
| 3 | bnj982.3 | |- ( ch -> A. x ch ) |
|
| 4 | bnj982.4 | |- ( th -> A. x th ) |
|
| 5 | df-bnj17 | |- ( ( ph /\ ps /\ ch /\ th ) <-> ( ( ph /\ ps /\ ch ) /\ th ) ) |
|
| 6 | 1 2 3 | hb3an | |- ( ( ph /\ ps /\ ch ) -> A. x ( ph /\ ps /\ ch ) ) |
| 7 | 6 4 | hban | |- ( ( ( ph /\ ps /\ ch ) /\ th ) -> A. x ( ( ph /\ ps /\ ch ) /\ th ) ) |
| 8 | 5 7 | hbxfrbi | |- ( ( ph /\ ps /\ ch /\ th ) -> A. x ( ph /\ ps /\ ch /\ th ) ) |