Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bnj982.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| bnj982.2 | ⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) | ||
| bnj982.3 | ⊢ ( 𝜒 → ∀ 𝑥 𝜒 ) | ||
| bnj982.4 | ⊢ ( 𝜃 → ∀ 𝑥 𝜃 ) | ||
| Assertion | bnj982 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃 ) → ∀ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj982.1 | ⊢ ( 𝜑 → ∀ 𝑥 𝜑 ) | |
| 2 | bnj982.2 | ⊢ ( 𝜓 → ∀ 𝑥 𝜓 ) | |
| 3 | bnj982.3 | ⊢ ( 𝜒 → ∀ 𝑥 𝜒 ) | |
| 4 | bnj982.4 | ⊢ ( 𝜃 → ∀ 𝑥 𝜃 ) | |
| 5 | df-bnj17 | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃 ) ↔ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) | |
| 6 | 1 2 3 | hb3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) → ∀ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ) |
| 7 | 6 4 | hban | ⊢ ( ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) → ∀ 𝑥 ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ∧ 𝜃 ) ) |
| 8 | 5 7 | hbxfrbi | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃 ) → ∀ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ∧ 𝜃 ) ) |