Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bnj1019 | ⊢ ( ∃ 𝑝 ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) ↔ ( 𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃ 𝑝 𝜏 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.42v | ⊢ ( ∃ 𝑝 ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ) ∧ 𝜏 ) ↔ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ) ∧ ∃ 𝑝 𝜏 ) ) | |
| 2 | bnj258 | ⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) ↔ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ) ∧ 𝜏 ) ) | |
| 3 | 2 | exbii | ⊢ ( ∃ 𝑝 ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) ↔ ∃ 𝑝 ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ) ∧ 𝜏 ) ) |
| 4 | df-bnj17 | ⊢ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃ 𝑝 𝜏 ) ↔ ( ( 𝜃 ∧ 𝜒 ∧ 𝜂 ) ∧ ∃ 𝑝 𝜏 ) ) | |
| 5 | 1 3 4 | 3bitr4i | ⊢ ( ∃ 𝑝 ( 𝜃 ∧ 𝜒 ∧ 𝜏 ∧ 𝜂 ) ↔ ( 𝜃 ∧ 𝜒 ∧ 𝜂 ∧ ∃ 𝑝 𝜏 ) ) |