Metamath Proof Explorer


Theorem bnj1127

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1127 YtrClXARYA

Proof

Step Hyp Ref Expression
1 biid f=predXARf=predXAR
2 biid iωsucinfsuci=yfipredyARiωsucinfsuci=yfipredyAR
3 eqid ω=ω
4 eqid f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR=f|nωfFnnf=predXARiωsucinfsuci=yfipredyAR
5 biid nωfFnnf=predXARiωsucinfsuci=yfipredyARnωfFnnf=predXARiωsucinfsuci=yfipredyAR
6 biid nωfFnnf=predXARiωsucinfsuci=yfipredyARfiAnωfFnnf=predXARiωsucinfsuci=yfipredyARfiA
7 biid jnjEi[˙j/i]˙nωfFnnf=predXARiωsucinfsuci=yfipredyARfiAjnjEi[˙j/i]˙nωfFnnf=predXARiωsucinfsuci=yfipredyARfiA
8 biid [˙j/i]˙f=predXAR[˙j/i]˙f=predXAR
9 biid [˙j/i]˙iωsucinfsuci=yfipredyAR[˙j/i]˙iωsucinfsuci=yfipredyAR
10 biid [˙j/i]˙nωfFnnf=predXARiωsucinfsuci=yfipredyAR[˙j/i]˙nωfFnnf=predXARiωsucinfsuci=yfipredyAR
11 biid [˙j/i]˙nωfFnnf=predXARiωsucinfsuci=yfipredyARfiA[˙j/i]˙nωfFnnf=predXARiωsucinfsuci=yfipredyARfiA
12 1 2 3 4 5 6 7 8 9 10 11 bnj1128 YtrClXARYA