Metamath Proof Explorer


Theorem bnj770

Description: /\ -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj770.1 ηφψχθ
bnj770.2 ψτ
Assertion bnj770 ητ

Proof

Step Hyp Ref Expression
1 bnj770.1 ηφψχθ
2 bnj770.2 ψτ
3 2 bnj706 φψχθτ
4 1 3 sylbi ητ