Metamath Proof Explorer


Theorem brcnv

Description: The converse of a binary relation swaps arguments. Theorem 11 of Suppes p. 61. (Contributed by NM, 13-Aug-1995)

Ref Expression
Hypotheses opelcnv.1 AV
opelcnv.2 BV
Assertion brcnv AR-1BBRA

Proof

Step Hyp Ref Expression
1 opelcnv.1 AV
2 opelcnv.2 BV
3 brcnvg AVBVAR-1BBRA
4 1 2 3 mp2an AR-1BBRA