Metamath Proof Explorer


Theorem brelrn

Description: The second argument of a binary relation belongs to its range. (Contributed by NM, 13-Aug-2004)

Ref Expression
Hypotheses brelrn.1 AV
brelrn.2 BV
Assertion brelrn ACBBranC

Proof

Step Hyp Ref Expression
1 brelrn.1 AV
2 brelrn.2 BV
3 brelrng AVBVACBBranC
4 1 2 3 mp3an12 ACBBranC