Metamath Proof Explorer


Theorem breq12i

Description: Equality inference for a binary relation. (Contributed by NM, 8-Feb-1996) (Proof shortened by Eric Schmidt, 4-Apr-2007)

Ref Expression
Hypotheses breq1i.1 A=B
breq12i.2 C=D
Assertion breq12i ARCBRD

Proof

Step Hyp Ref Expression
1 breq1i.1 A=B
2 breq12i.2 C=D
3 breq12 A=BC=DARCBRD
4 1 2 3 mp2an ARCBRD