Metamath Proof Explorer


Theorem breqtrd

Description: Substitution of equal classes into a binary relation. (Contributed by NM, 24-Oct-1999)

Ref Expression
Hypotheses breqtrd.1 φARB
breqtrd.2 φB=C
Assertion breqtrd φARC

Proof

Step Hyp Ref Expression
1 breqtrd.1 φARB
2 breqtrd.2 φB=C
3 2 breq2d φARBARC
4 1 3 mpbid φARC