Metamath Proof Explorer


Theorem brimralrspcev

Description: Restricted existential specialization with a restricted universal quantifier over an implication with a relation in the antecedent, closed form. (Contributed by AV, 20-Aug-2022)

Ref Expression
Assertion brimralrspcev BXyYφARBψxXyYφARxψ

Proof

Step Hyp Ref Expression
1 breq2 x=BARxARB
2 1 anbi2d x=BφARxφARB
3 2 rspceaimv BXyYφARBψxXyYφARxψ