Metamath Proof Explorer


Theorem brovmpoex

Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017)

Ref Expression
Hypothesis brovmpoex.1 O=xV,yVzw|φ
Assertion brovmpoex FVOEPVVEVFVPV

Proof

Step Hyp Ref Expression
1 brovmpoex.1 O=xV,yVzw|φ
2 1 relmpoopab RelVOE
3 2 a1i VVEVRelVOE
4 1 3 brovex FVOEPVVEVFVPV