Metamath Proof Explorer


Theorem brovex

Description: A binary relation of the value of an operation given by the maps-to notation. (Contributed by Alexander van der Vekens, 21-Oct-2017)

Ref Expression
Hypotheses brovex.1 O=xV,yVC
brovex.2 VVEVRelVOE
Assertion brovex FVOEPVVEVFVPV

Proof

Step Hyp Ref Expression
1 brovex.1 O=xV,yVC
2 brovex.2 VVEVRelVOE
3 df-br FVOEPFPVOE
4 ne0i FPVOEVOE
5 1 mpondm0 ¬VVEVVOE=
6 5 necon1ai VOEVVEV
7 brrelex12 RelVOEFVOEPFVPV
8 2 7 sylan VVEVFVOEPFVPV
9 id VVEVFVPVVVEVFVPV
10 8 9 syldan VVEVFVOEPVVEVFVPV
11 10 ex VVEVFVOEPVVEVFVPV
12 4 6 11 3syl FPVOEFVOEPVVEVFVPV
13 3 12 sylbi FVOEPFVOEPVVEVFVPV
14 13 pm2.43i FVOEPVVEVFVPV